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Abstract 

In present study, we have employed alignment independent 3D-descriptors and General Unrestricted Structure Activity Relationships 

(GUSAR) to explore α-glucosidase inhibitory activity of xanthone derivatives. The analysis reveals that integration of both techniques not only 

leads to consensus pharmacophore identification but also a better and clear idea about the contribution of individual atom/group in deciding the 

pharmacological activity. R2, R2
adj., F and Q2were the various yardsticks to assess the quality of QSAR and GUSAR models. For the xanthone 

derivatives, used in present analysis, the consensus GUSAR and conventional 3D-QSAR model have high statistical robustness with R2 being 

0.813 and 0.837 respectively. The present analysis enlightens that the factors which are either missed or neglected by conventional QSAR 

model(s) can be identified with GUSAR. 
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Introduction 

Diabetes has adverse effects on medical and economic conditions of patients. The α-glucosidase, exo-acting 

carbohydrases, are essential enzymes which are capable of releasing α-D-glucopyranose from the non-reducing ends 

of a variety of carbohydrates. Literature survey reveals that the inhibition of its catalytic activity causes retardation 

of glucose absorption and significant reduction in postprandial blood glucose level. Owing to this, efficient α-

glucosidase inhibitors are promising chemotherapeutic agents for treatment of hypertension, diabetes, obesity, 

dyslipidemia, and cardiovascular diseases in patients with metabolic disorder [1, 2]. Myriad number of glucosidic 

derivatives has been reported to be α-glucosidase inhibitors. However, insufficient structural information about the 

nature of the interactions between α-glucosidase and the inhibitors has thus made it a hard task to find out good lead 

compounds [3]. QSAR and GUSAR studies are fruitful methods when little or no information is available about 3D 

structure of target enzyme. QSAR is used to buildrational mathematical relations (models) between structural 
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features and the biological activity of the congeneric molecules. In QSAR, the common methodology is to generate 

linear multi-parametric model(s) which gives idea about role of certain structural features for whole set, but for 

some molecules, it isplausible that some additional structural features might be more affecting, which are omitted or 

missed during model generation. In some instances, it is also probable that the structural feature which appears to 

play crucial (positive or negative) role for “whole set” may have small or negligible impact on biological profile of 

certain molecules of same data set [4-12]. In these conditions, the use of QSAR model is either erroneous or 

incorrect. Doable solutions are either to include additional features in QSAR model with more descriptors which 

may cause “over fitting” or to use QSAR in integration with any other technique. Herein, we report the integration 

of conventional 3D-QSAR with GUSAR [13-16]. Some of the advantages associated with GUSAR are: (1) For 

creation of a reliable QSAR model with optimal number and set of descriptors, Self-Consistent Regression (SCR) 

algorithm is utilized. (2) Quantitative Neighbourhoods of Atoms (QNA) and Multilevel Neighbourhoods of Atoms 

(MNA) descriptors are used which are better than conventional descriptors to reveal the nature of intermolecular 

interactions. (3) It predicts the quantitative values of biological activity of chemical compounds on the basis of their 

“structural formulae” only and there is no need to have information about the 3D structure of ligands and/or target 

protein(s).  

Preparation of the structures and computational softwares: 

The 43 molecules were drawn in ChemSketch 12 freeware [17] followed by MM2 energy minimization and 

biological data addition before further analysis in GUSAR 2010. For better analysis, following settings were used: 

Y-randomization = 20 iterations, Leave Many Out (LMO) = 20 iterations, No. of leave out = 10%, leverages = 0.99, 

Similarity = 0.70, kNN RMSE/ Average RMSE = 1, No. of Models = 36. For conventional 3D-QSAR, e-Dragon and 

Weka 3.7 were used for descriptor generation and model building respectively. 

Results and discussions: 

Theory of GUSAR: 

Quantitative Neighbourhoods of Atoms (QNA) and Multilevel Neighbourhoods of Atoms (MNA) descriptors as 

well as Self-Consistent Regression (SCR) algorithm
13-16

 are well implemented and utilized in GUSAR. The 

calculation of QNA and MNA involves NN for better and accurate results. The basic difference between 

conventional QSAR and GUSAR lies in the representation of molecule in the space of calculated descriptors. In 

GUSAR, any molecule is represented as a set of points in two-dimensional (2D) space of QNA descriptors, whereas 

in conventional QSAR approach, any molecule is represented as a single point in a many-dimensional space of 

molecular descriptors. In GUSAR, QNA and MNA descriptors are used to build the consensus model; the 
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calculations of these descriptors are well documented in the literature
13-16

. (4) GUSAR gives output, which is in the 

form a diagram for individual molecule of the data set, revealing the atoms suitably coloured according to their 

specific contribution to the activity. (5) GUSAR performs cross validation and Y-randomization and checks the 

various statistical characteristics to build consensus model during the course of model building. (6) Calculation of 

descriptors and generation of model is alignment independent. This study may help us to design new analogues with 

better biological profile. 

Experimental/Computational protocol: 

Data set: The database consists of 43 recently discovered xanthone derivatives as α-glucosidase inhibitors [3,18]. 

Their structures and in vitro activity are listed in Fig. 1 and Table 1 respectively. Activity values were converted into 

the corresponding pIC50 = −log10 (IC50) values, where IC50 is the effective concentration of compound required to 

achieve 50% of inhibition of α-glucosidase. 

Analysis of GUSAR output: 

The output of GUSAR appears in the form of an image in which the atoms are coloured according to their 

contribution towards biological activity along with various statistical characteristics used to arrive at the consensus 

model (Figure 2). The obvious limitation of GUSAR is that it neither provides the QSAR model as MLR in 

interpretable form nor any knowledge about the descriptors that are used to build the consensus model. If QSAR 

models were produced on the basis of QNA descriptors the involvement of every atom into the predicted value is 

showed for a studied compound.The contribution is a calculation of activity value for a single atom from the 

structure of the studied molecule. Explanation of the colours is as following: “Green” means that the impact of the 

atom approximately corresponds to the predicted activity value for a whole molecule. “Blue” means that the 

particular atom may decrease the activity. “Red” means that the particular atom may increase the activity. Thus, if 

one would like to increase the activity, the number of “blue” atoms should be reduced, and the number of “red” 

atoms should be increased. One can analyze how many fragments have "red" and "blue" colors for finding the most 

important fragments
14-16

.The QNA descriptors based consensus model which was automatically generated and 

selected among the 36 models by GUSAR 2010was found to be with following statistical characteristics: 

N = 43, R
2
 = 0.813, R

2
adj. = 0.782, F = 18.207, SD = 0.204, Q

2
 = 0.747, V = 6  

Where N is total number of molecules used, R is correlation coefficient, R
2
adj.is adjusted R

2
, F is value of Fischer’s 

parameter, SD is standard deviation, Q
2
 is the cross-validated R

2
 and V is no. of variables used in the model 

building. The high value of R
2
, R

2
adj.,Q

2
, F and low value of SD indicates that the model is statistically very sound 
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and could be used for future drug designing.The GUSAR analysis was performed for complete data set of 43 

molecules. To analyze the contribution of atoms towards binding with receptor, we report the output of GUSAR for 

four most active and four least active as representative xanthones to get insight into atom-wise contribution towards 

biological activity(figure 3).  

Figure 1.Structures of Xanthone derivatives. 

Table 1: Experimental, predicted pIC50 (GUSAR model) and pIC50 (QSAR model) 

 

Compound pIC50 

( Exp.) 

pIC50  (Calc.) 

GUSAR model 

Residual 

(Exp.-Pred. GUSAR) 

pIC50  (Calc.) 

QSAR model 

Residual 

(Exp.-Pred. QSAR) 

X1 -2.25 -2.2969 0.04690 -2.1648 -0.0852 

X10 -2.14 -1.9232 -0.21680 -2.0157 -0.1243 

X11 -1.67 -1.634 -0.03600 -1.5887 -0.0813 

X12 -1.7 -1.5769 -0.12310 -1.5156 -0.1844 

X13 -2.24 -2.1009 -0.13910 -2.2326 -0.0074 

X14 -2.04 -2.1491 0.10910 -2.1330 0.0930 

X15 -2.11 -2.1563 0.04630 -2.1492 0.0392 

X16 -2.08 -2.1517 0.07170 -2.1067 0.0267 

X17 -2.06 -2.1166 0.05660 -2.1347 0.0747 

X18 -2.09 -2.0906 0.00060 -2.1211 0.0311 

X19 -2.06 -2.0551 -0.00490 -2.0990 0.0390 
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X20 -1.99 -1.8371 -0.15290 -2.1296 0.1396 

X21 -1.82 -1.9318 0.11180 -1.7610 -0.0590 

X22 -1.72 -1.9474 0.22740 -1.7066 -0.0134 

X23 -2.06 -1.9598 -0.10020 -2.1466 0.0866 

X24 -1.79 -1.8398 0.04980 -1.9910 0.2010 

X25 -1.8 -1.9498 0.14980 -1.8826 0.0826 

X26 -2.12 -1.9624 -0.15760 -2.1135 -0.0065 

X27 -0.97 -1.2345 0.26450 -1.2784 0.3084 

X28 -0.76 -0.92998 0.16998 -0.5640 -0.1960 

X29 -0.9 -1.0914 0.19140 -0.7724 -0.1276 

X3 -1.96 -2.0709 0.11090 -2.0027 0.0427 

X30 -1.5 -1.4028 -0.09720 -1.5902 0.0902 

X31 -1.3 -1.191 -0.10900 -1.2184 -0.0816 

X32 -1.44 -1.4217 -0.01830 -1.3535 -0.0865 

X33 -1.6 -1.2123 -0.38770 -1.3363 -0.2637 

X34 -1.54 -1.5649 0.02490 -1.3926 -0.1474 

X35 -2.37 -1.7651 -0.60490 -2.0317 -0.3383 

X36 -2.01 -1.7577 -0.25230 -1.7468 -0.2632 

X37 -2.17 -2.0528 -0.11720 -2.0122 -0.1578 

X38 -2.3 -2.1719 -0.12810 -2.0233 -0.2767 

X39 -0.77 -1.2801 0.51010 -1.1308 0.3608 

X4 -2.12 -1.8899 -0.23010 -2.0305 -0.0895 

X40 -0.8 -1.2147 0.41470 -1.0029 0.2029 

X41 -0.92 -1.1851 0.26510 -1.0058 0.0858 

X42 -1.47 -1.4164 -0.05360 -1.6140 0.1440 

X43 -1.83 -1.482 -0.34800 -1.5408 -0.2892 

X5 -1.91 -1.6665 -0.24350 -1.7783 -0.1317 

X6 -1.62 -1.5605 -0.05950 -1.7508 0.1308 

X7 -1.17 -1.5091 0.33910 -1.4105 0.2405 

X8 -1.23 -1.4243 0.19430 -1.4730 0.2430 

X9 -1.5 -2.0335 0.53350 -2.0276 0.5276 
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Figure 2: Output of GUSAR (On left side: most active molecule 28with atoms coloured according to their 

contribution in deciding the biological activity and on right side: various statistical characteristics and a graph 

between observed & predicted values) 
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Figure 3: Contribution of each atom/fragment towards biological activity. (Red-Positive, Blue-Negative and Green- 

No Effect).  

 

Figure4 is a graph between observed and predicted values for biologic activity which reveals that there is good 

relation between experimental and predicted values.  

Figure 4. Graph between observed and predicted values for biologic activity. 
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Conventional 3D-QSAR analysis 

 

For conventional 3D-QSAR, e-Dragon was used to calculate 1D, 2D and 3D descriptors. The QSAR model was 

built using Genetic Algorithm (GA) implemented in Weka 3.7. GA has the advantage that it can select optimum 

number and set of descriptors for model generation. The best QSAR model based on five descriptors is as follows: 

pIC50 = - 3.481 + 0.172 D.B. + 0.496 Nπ + 0.220 a_don + 0.851 MATS7v + 0.167 Hs 

N = 43, s = 0.198, R
2
 = 0.837, R

2
adj = 0.815, PRESS = 2.112, R

2
pred = 0.764 

Where N is number of compounds in data set, R is the correlation coefficient, R
2
 is the coefficient of determination, 

R
2

adjis adjusted coefficient of determination.  

We might have developed a four parametric equation inadvertently. Therefore, in order to prove that the model is 

not a chance-comer, we have calculated R
2
pred and R

2
adj also. The rationale for using R

2
adj is that it varies with 

number of descriptors used and its value reduces with rise in the number of redundant descriptors. The high value of 

R, R
2
 and R

2
predindicates that model has excellent statistical significance. Moreover, the value of R

2
adjwhich is 

considered as better parameter to judge the predictive power compared to R
2
, is close to the value of R

2 
thereby 

validating the high predictive power of model [6-9].The QSAR model reveals that activity is directly related to D.B. 

(number of double bonds in the molecule), Nπ, a_don(number of donor atoms), MATS7v (a 2D autocorrelation 

descriptor), and Hs(number of hydrogen atoms). All these descriptors have positive coefficient which means the 

values of these descriptors should be increased to enhance the activity. From QSAR analysis, it is clear that D.B. 

(number of double bonds in the molecule) affects biological activity, but which double bonds have higher influence 

is uncertain from the conventional QSAR model. The success of GUSAR lies in giving answers to this type of 

specific questions. On the same basis, GUSAR tells about the type and position of π bonds, number of donor atoms, 

number of hydrogen atoms which affects the biological activity. Thus, a combine use of GUSAR and QSAR gives 

better, interpretable and clear idea of specific fragments/atoms that influences the biological activity. 

Conclusions 

From the present analyses, it is clear that combined use of GUSAR and QSAR is highly useful in finding the 

specific fragments/atoms which governs the biologic profile of the molecule. The structural features which control 

the activity but either neglected or missed by the conventional QSAR model(s) can be traced using GUSAR. In 

present work, GUSAR was able to indicate the specific double bonds, π bonds, number of donor atoms, number of 

hydrogen atoms which governs the α-glucosidase inhibitory activity of xanthone derivatives. 
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